Package: crctStepdown 0.5.2

crctStepdown: Univariate Analysis of Cluster Trials with Multiple Outcomes

Frequentist statistical inference for cluster randomised trials with multiple outcomes that controls the family-wise error rate and provides nominal coverage of confidence sets. A full description of the methods can be found in Watson et al. (2023) <doi:10.1002/sim.9831>.

Authors:Sam Watson [aut, cre]

crctStepdown_0.5.2.tar.gz
crctStepdown_0.5.2.zip(r-4.5)crctStepdown_0.5.2.zip(r-4.4)crctStepdown_0.5.2.zip(r-4.3)
crctStepdown_0.5.2.tgz(r-4.4-x86_64)crctStepdown_0.5.2.tgz(r-4.4-arm64)crctStepdown_0.5.2.tgz(r-4.3-x86_64)crctStepdown_0.5.2.tgz(r-4.3-arm64)
crctStepdown_0.5.2.tar.gz(r-4.5-noble)crctStepdown_0.5.2.tar.gz(r-4.4-noble)
crctStepdown_0.5.2.tgz(r-4.4-emscripten)crctStepdown_0.5.2.tgz(r-4.3-emscripten)
crctStepdown.pdf |crctStepdown.html
crctStepdown/json (API)

# Install 'crctStepdown' in R:
install.packages('crctStepdown', repos = c('https://samueliwatson.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Uses libs:
  • c++– GNU Standard C++ Library v3
  • openmp– GCC OpenMP (GOMP) support library

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.00 score 1 scripts 239 downloads 7 exports 76 dependencies

Last updated 10 months agofrom:134a0f14b1. Checks:OK: 9. Indexed: yes.

TargetResultDate
Doc / VignettesOKOct 30 2024
R-4.5-win-x86_64OKOct 30 2024
R-4.5-linux-x86_64OKOct 30 2024
R-4.4-win-x86_64OKOct 30 2024
R-4.4-mac-x86_64OKOct 30 2024
R-4.4-mac-aarch64OKOct 30 2024
R-4.3-win-x86_64OKOct 30 2024
R-4.3-mac-x86_64OKOct 30 2024
R-4.3-mac-aarch64OKOct 30 2024

Exports:est_null_modelgen_rand_orderoutname_fitsetParallelCRTsimpleLMstepdowntwoarm_sim

Dependencies:abindbackportsBHbigmemorybigmemory.sribootbroomcarcarDataclicolorspacecorrplotcowplotcpp11DerivdoBydplyrfansifarverfastglmFormulagenericsggplot2ggpubrggrepelggsciggsignifgluegridExtragtableisobandlabelinglatticelifecyclelme4magrittrMASSMatrixMatrixModelsmgcvmicrobenchmarkminqamodelrmunsellnlmenloptrnnetnumDerivpbkrtestpillarpkgconfigplyrpolynompurrrquantregR6RColorBrewerRcppRcppEigenRcppParallelreshape2rlangrstatixscalesSparseMstringistringrsurvivaltibbletidyrtidyselectutf8uuidvctrsviridisLitewithr